On Volterra composition operators from Bergman-type space to Bloch-type space
نویسندگان
چکیده
منابع مشابه
Weighted composition operators from Bergman-type spaces into Bloch spaces
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...
متن کاملWeighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space
The boundedness of the weighted differentiation composition operator from the logarithmic Bloch space to the weighted-type space is characterized in terms of the sequence (zn)n∈N0 . An asymptotic estimate of the essential norm of the operator is also given in terms of the sequence, which gives a characterization for the compactness of the operator.
متن کاملVolterra composition operators from generally weighted Bloch spaces to Bloch-type spaces on the unit ball
Let φ be a holomorphic self-map of the open unit ball B, g ∈ H(B). In this paper, the boundedness and compactness of the Volterra composition operator T g from generally weighted Bloch spaces to Bloch-type spaces are investigated. c ©2012 NGA. All rights reserved.
متن کاملWeighted Composition Operator from Bers-Type Space to Bloch-Type Space on the Unit Ball
In this paper, we characterize the boundedness and compactness of weighted composition operator from Bers-type space to Bloch-type space on the unit ball of Cn. 2010 Mathematics Subject Classification: Primary: 47B38; Secondary: 32A37, 32A38, 32H02, 47B33
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2011
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-011-0042-x